Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Toxins (Basel) ; 13(2)2021 01 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1344393

RESUMEN

Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis. The antiviral properties of RIPs have been investigated for more than four decades. However, interest in these proteins is rising due to the emergence of infectious diseases caused by new viruses and the difficulty in treating viral infections. On the other hand, there is a growing need to control crop diseases without resorting to the use of phytosanitary products which are very harmful to the environment and in this respect, RIPs have been shown as a promising tool that can be used to obtain transgenic plants resistant to viruses. The way in which RIPs exert their antiviral effect continues to be the subject of intense research and several mechanisms of action have been proposed. The purpose of this review is to examine the research studies that deal with this matter, placing special emphasis on the most recent findings.


Asunto(s)
Antivirales/farmacología , Control Biológico de Vectores , Enfermedades de las Plantas/prevención & control , Plantas Modificadas Genéticamente/enzimología , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Inactivadoras de Ribosomas/farmacología , Toxinas Biológicas/farmacología , Virosis/tratamiento farmacológico , Virus/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Humanos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Proteínas Inactivadoras de Ribosomas/aislamiento & purificación , Toxinas Biológicas/aislamiento & purificación , Virosis/metabolismo , Virosis/virología , Virus/metabolismo , Virus/patogenicidad
2.
Crit Rev Microbiol ; 47(3): 307-322, 2021 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1078679

RESUMEN

The ongoing COVID-19 pandemic has made us wonder what led to its occurrence and what can be done to avoid such events in the future. As we document, one changing circumstance that is resulting in the emergence and changing the expression of viral diseases in both plants and animals is climate change. Of note, the rapidly changing environment and weather conditions such as excessive flooding, droughts, and forest fires have raised concerns about the global ecosystem's security, sustainability, and balance. In this review, we discuss the main consequences of climate change and link these to how they impact the appearance of new viral pathogens, how they may facilitate transmission between usual and novel hosts, and how they may also affect the host's ability to manage the infection. We emphasize how changes in temperature and humidity and other events associated with climate change influence the reservoirs of viral infections, their transmission by insects and other intermediates, their survival outside the host as well the success of infection in plants and animals. We conclude that climate change has mainly detrimental consequences for the emergence, transmission, and outcome of viral infections and plead the case for halting and hopefully reversing this dangerous event.


Asunto(s)
COVID-19/transmisión , Cambio Climático , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades de las Plantas/virología , Virosis/transmisión , Animales , Organismos Acuáticos/virología , COVID-19/complicaciones , COVID-19/etiología , COVID-19/inmunología , Quirópteros/virología , Enfermedades Transmisibles Emergentes/complicaciones , Enfermedades Transmisibles Emergentes/etiología , Enfermedades Transmisibles Emergentes/inmunología , Productos Agrícolas/virología , Reservorios de Enfermedades/virología , Vectores de Enfermedades/clasificación , Abastecimiento de Alimentos , Humanos , Humedad , Enfermedades de las Plantas/inmunología , Enfermedades de los Primates/transmisión , Enfermedades de los Primates/virología , Primates , Lluvia , Estaciones del Año , Temperatura , Virosis/complicaciones , Virosis/etiología , Virosis/inmunología
3.
Viruses ; 13(2)2021 02 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1079721

RESUMEN

This Special Issue of Viruses is a collection of the current knowledge on a broad range of emerging human, animal, and plant viral diseases [...].


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Virosis/epidemiología , Virosis/transmisión , Virus/clasificación , Animales , Humanos , Enfermedades de las Plantas/virología , Plantas/virología
4.
Viruses ; 13(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1011629

RESUMEN

We are pleased to present in this Special Issue a series of reviews and research studies on the topic of "Plant Virus Emergence" [...].


Asunto(s)
Virus de Plantas/aislamiento & purificación , Plantas/virología , Enfermedades de las Plantas/virología , Virus de Plantas/genética
5.
Viruses ; 12(12)2020 12 17.
Artículo en Inglés | MEDLINE | ID: covidwho-993595

RESUMEN

Plant viruses are commonly vectored by flying or crawling animals, such as aphids and beetles, and cause serious losses in major agricultural and horticultural crops. Controlling virus spread is often achieved by minimizing a crop's exposure to the vector, or by reducing vector numbers with compounds such as insecticides. A major, but less obvious, factor not controlled by these measures is Homo sapiens. Here, we discuss the inconvenient truth of how humans have become superspreaders of plant viruses on both a local and a global scale.


Asunto(s)
Productos Agrícolas/virología , Enfermedades de las Plantas/virología , Virosis/transmisión , Animales , Cambio Climático , Vectores de Enfermedades , Humanos , Enfermedades de las Plantas/prevención & control , Virus de Plantas/crecimiento & desarrollo
6.
Viruses ; 12(11)2020 11 09.
Artículo en Inglés | MEDLINE | ID: covidwho-918255

RESUMEN

The COVID-19 pandemic has shown that understanding the genomics of a virus, diagnostics and breaking virus transmission is essential in managing viral pandemics. The same lessons can apply for plant viruses. There are plant viruses that have severely disrupted crop production in multiple countries, as recently seen with maize lethal necrosis disease in eastern and southern Africa. High-throughput sequencing (HTS) is needed to detect new viral threats. Equally important is building local capacity to develop the tools required for rapid diagnosis of plant viruses. Most plant viruses are insect-vectored, hence, biological insights on virus transmission are vital in modelling disease spread. Research in Africa in these three areas is in its infancy and disjointed. Despite intense interest, uptake of HTS by African researchers is hampered by infrastructural gaps. The use of whole-genome information to develop field-deployable diagnostics on the continent is virtually inexistent. There is fledgling research into plant-virus-vector interactions to inform modelling of viral transmission. The gains so far have been modest but encouraging, and therefore must be consolidated. For this, I propose the creation of a new Research Centre for Africa. This bold investment is needed to secure the future of Africa's crops from insect-vectored viral diseases.


Asunto(s)
Productos Agrícolas/virología , Insectos Vectores/virología , Enfermedades de las Plantas/prevención & control , Virosis/prevención & control , África Austral , Agricultura/métodos , Animales , COVID-19 , Genoma Viral , Interacciones Microbiota-Huesped , Virus de Insectos/genética , Virus de Insectos/aislamiento & purificación , Virus de Insectos/patogenicidad , Enfermedades de las Plantas/virología , Virus de Plantas/patogenicidad , Virosis/transmisión , Zea mays/virología
7.
Biosens Bioelectron ; 169: 112592, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: covidwho-747238

RESUMEN

Global health and food security constantly face the challenge of emerging human and plant diseases caused by bacteria, viruses, fungi, and other pathogens. Disease outbreaks such as SARS, MERS, Swine Flu, Ebola, and COVID-19 (on-going) have caused suffering, death, and economic losses worldwide. To prevent the spread of disease and protect human populations, rapid point-of-care (POC) molecular diagnosis of human and plant diseases play an increasingly crucial role. Nucleic acid-based molecular diagnosis reveals valuable information at the genomic level about the identity of the disease-causing pathogens and their pathogenesis, which help researchers, healthcare professionals, and patients to detect the presence of pathogens, track the spread of disease, and guide treatment more efficiently. A typical nucleic acid-based diagnostic test consists of three major steps: nucleic acid extraction, amplification, and amplicon detection. Among these steps, nucleic acid extraction is the first step of sample preparation, which remains one of the main challenges when converting laboratory molecular assays into POC tests. Sample preparation from human and plant specimens is a time-consuming and multi-step process, which requires well-equipped laboratories and skilled lab personnel. To perform rapid molecular diagnosis in resource-limited settings, simpler and instrument-free nucleic acid extraction techniques are required to improve the speed of field detection with minimal human intervention. This review summarizes the recent advances in POC nucleic acid extraction technologies. In particular, this review focuses on novel devices or methods that have demonstrated applicability and robustness for the isolation of high-quality nucleic acid from complex raw samples, such as human blood, saliva, sputum, nasal swabs, urine, and plant tissues. The integration of these rapid nucleic acid preparation methods with miniaturized assay and sensor technologies would pave the road for the "sample-in-result-out" diagnosis of human and plant diseases, especially in remote or resource-limited settings.


Asunto(s)
Enfermedades Transmisibles/diagnóstico , Dispositivos Laboratorio en un Chip , Ácidos Nucleicos/aislamiento & purificación , Enfermedades de las Plantas , Sistemas de Atención de Punto , Betacoronavirus/aislamiento & purificación , COVID-19 , Fraccionamiento Químico/instrumentación , Fraccionamiento Químico/métodos , Enfermedades Transmisibles/microbiología , Enfermedades Transmisibles/parasitología , Enfermedades Transmisibles/virología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Diseño de Equipo , Humanos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , Ácidos Nucleicos/sangre , Ácidos Nucleicos/orina , Pandemias , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/virología , Neumonía Viral/diagnóstico , Neumonía Viral/virología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA